3,277 research outputs found

    Floating Wigner molecules and possible phase transitions in quantum dots

    Full text link
    A floating Wigner crystal differs from the standard one by a spatial averaging over positions of the Wigner-crystal lattice. It has the same internal structure as the fixed crystal, but contrary to it, takes into account rotational and/or translational symmetry of the underlying jellium background. We study properties of a floating Wigner molecule in few-electron spin-polarized quantum dots, and show that the floating solid has the lower energy than the standard Wigner crystal with fixed lattice points. We also argue that internal rotational symmetry of individual dots can be broken in arrays of quantum dots, due to degenerate ground states and inter-dot Coulomb coupling.Comment: 6 pages incl 3 figure

    Ridges and Soft Jet Components in Untriggered Di-hadron Correlations in Pb+Pb Collisions at 2.76 TeV

    Full text link
    We study untriggered di-hadron correlations in Pb+Pb at 2.76 TeV, based on an event-by-event simulation of a hydrodynamic expansion starting from flux tube initial conditions. The correlation function shows interesting structures as a function of the pseudorapidity difference Δη\Delta\eta and the azimuthal angle difference Δϕ\Delta\phi, in particular comparing different centralities. We can clearly identify a peak-like nearside structure associated with very low momentum components of jets for peripheral collisions, which disappears towards central collisions. On the other hand, a very broad ridge structure from asymmetric flow seen at central collisions, gets smaller and finally disappears towards peripheral collisions

    Bose-Einstein Correlations in a Fluid Dynamical Scenario for Proton-Proton Scattering at 7 TeV

    Full text link
    Using a fluid dynamical scenario for pppp scattering at 7 TeV, we compute correlation functions for π+π+\pi^+\pi^+ pairs. Femtoscopic radii are extracted based on three-dimensional parametrizations of the correlation functions. We study the radii as a function of the transverse momenta of the pairs, for different multiplicity classes, corresponding to recent experimental results from ALICE. We find the same decrease of the radii with kTk_T, more and more pronounced with increasing multiplicity, but absent for the lowest multiplicities. In the model we understand this as transition from string expansion (low multiplicity) towards a three-dimensional hydrodynamical expansion (high multiplicity)

    Dielectric function and plasmons in graphene

    Full text link
    The electromagnetic response of graphene, expressed by the dielectric function, and the spectrum of collective excitations are studied as a function of wave vector and frequency. Our calculation is based on the full band structure, calculated within the tight-binding approximation. As a result, we find plasmons whose dispersion is similar to that obtained in the single-valley approximation by Dirac fermions. In contrast to the latter, however, we find a stronger damping of the plasmon modes due to inter-band absorption. Our calculation also reveals effects due to deviations from the linear Dirac spectrum as we increase the Fermi energy, indicating an anisotropic behavior with respect to the wave vector of the external electromagnetic field

    Bifurcation to Traveling Spots in Reaction-Diffusion Systems

    Get PDF
    A bifurcation leading to the onset of translational motion of localized particlelike structures (spots) in two-dimensional excitable media with long-range inhibition and global coupling is analytically and numerically investigated. Properties of slowly traveling spots and effects of collisions between these objects are studied

    Multiboson effects in multiparticle production

    Get PDF
    The influence of multiboson effects on pion multiplicities, single-pion spectra and two-pion correlation functions is discussed in terms of an analytically solvable model. The applicability of its basic factorization assumption is clarified. An approximate scaling of the basic observables with the phase space density is demonstrated in the low density (gas) limit. This scaling and also its violation at high densities due to the condensate formation is described by approximate analytical formulae which allow, in principle, for the identification of the multiboson effects among others. For moderate densities indicated by the experimental data, a fast saturation of multiboson effects with the number of contributing cumulants is obtained, allowing for the account of these effects in realistic transport code simulations. At high densities, the spectra are mainly determined by the universal condensate term and the initially narrow Poisson multiplicity distribution approaches a wide Bose-Einstein one. As a result, the intercepts of the inclusive and fixed-nn correlation functions (properly normalized to 1 at large relative momenta) approach 2 and 1, respectively and their widths logarithmically increase with the increasing phase space density. It is shown that the neglect of energy-momentum constraints in the model is justified except near a multipion threshold, where these constraints practically exclude the possibility of a very cold condensate production. It is argued that spectacular multiboson effects are likely to be observed only in the rare events containing sufficiently high density (speckle) fluctuations.Comment: 30 pages including 10 figures, LaTex, a revised version of SUBATECH 99-04 (aps1999_mar21_001) resubmitted to Phys. Rev. C; Chapter II made shorter, figure description made more clear, a comparison with most recent works added in Chapter V

    Nonlinear electromagnetic response of graphene: Frequency multiplication and the self-consistent-field effects

    Full text link
    Graphene is a recently discovered carbon based material with unique physical properties. This is a monolayer of graphite, and the two-dimensional electrons and holes in it are described by the effective Dirac equation with a vanishing effective mass. As a consequence, electromagnetic response of graphene is predicted to be strongly non-linear. We develop a quasi-classical kinetic theory of the non-linear electromagnetic response of graphene, taking into account the self-consistent-field effects. Response of the system to both harmonic and pulse excitation is considered. The frequency multiplication effect, resulting from the non-linearity of the electromagnetic response, is studied under realistic experimental conditions. The frequency up-conversion efficiency is analysed as a function of the applied electric field and parameters of the samples. Possible applications of graphene in terahertz electronics are discussed.Comment: 14 pages, 7 figures, invited paper written for a special issue of JPCM "Terahertz emitters

    Geomagnetic storm effects at F1-layer heights from incoherent scatter observations

    No full text
    International audienceStorm effects at F1-layer heights (160?200 km) were analyzed for the first time using Millstone Hill (mid-latitudes) and EISCAT (auroral zone) incoherent scatter (IS) observations. The morphological study has shown both increases (positive effect) and decreases (negative effect) in electron concentration. Negative storm effects prevail for all seasons and show a larger magnitude than positive ones, the magnitude of the effect normally increasing with height. At Millstone Hill the summer storm effects are small compared to other seasons, but they are well detectable. At EISCAT this summer decrease takes place only with respect to the autumnal period and the autumn/spring asymmetry in the storm effects is well pronounced. Direct and significant correlation exists between deviations in electron concentration at the F1-layer heights and in the F2-layer maximum. Unlike the F2-layer the F1-region demonstrates a relatively small reaction to geomagnetic disturbances despite large perturbations in thermospheric parameters. Aeronomic parameters extracted from IS observations are used to explain the revealed morphology. A competition between atomic and molecular ion contributions to Ne variations was found to be the main physical mechanism controlling the F1-layer storm effect. The revealed morphology is shown to be related with neutral composition (O, O2, N2) seasonal and storm-time variations. The present day understanding of the F1-region formation mechanisms is sufficient to explain the observed storm effects

    Self-sustained spatiotemporal oscillations induced by membrane-bulk coupling

    Get PDF
    We propose a novel mechanism leading to spatiotemporal oscillations in extended systems that does not rely on local bulk instabilities. Instead, oscillations arise from the interaction of two subsystems of different spatial dimensionality. Specifically, we show that coupling a passive diffusive bulk of dimension d with an excitable membrane of dimension d-1 produces a self-sustained oscillatory behavior. An analytical explanation of the phenomenon is provided for d=1. Moreover, in-phase and anti-phase synchronization of oscillations are found numerically in one and two dimensions. This novel dynamic instability could be used by biological systems such as cells, where the dynamics on the cellular membrane is necessarily different from that of the cytoplasmic bulk.Comment: Accepted for publication in Physical Review Letter

    Algebraic entropy for semi-discrete equations

    Full text link
    We extend the definition of algebraic entropy to semi-discrete (difference-differential) equations. Calculating the entropy for a number of integrable and non integrable systems, we show that its vanishing is a characteristic feature of integrability for this type of equations
    corecore